Minimal Ellipsoid Circumscribing a Polytope Defined by a System of Linear Inequalities
نویسندگان
چکیده
In this paper, we will propose algorithms for calculating a minimal ellipsoid circumscribing a polytope defined by a system of linear inequalities. If we know all vertices of the polytope and its cardinality is not very large, we can solve the problem in an efficient manner by a number of existent algorithms. However, when the polytope is defined by linear inequalities, these algorithms may not work since the cardinality of vertices may be huge. Based on a fact that vertices determining an ellipsoid are only a fraction of these vertices, we propose algorithms which iteratively calculate an ellipsoid which covers a subset of vertices. Numerical experiment shows that these algorithms perform well for polytopes of dimension up to seven.
منابع مشابه
Perfect Delaunay Polytopes and Perfect Inhomogeneous Forms
A lattice Delaunay polytope D is called perfect if it has the property that there is a unique circumscribing ellipsoid with interior free of lattice points, and with the surface containing only those lattice points that are the vertices of D. An inhomogeneous quadratic form is called perfect if it is determined by such a circumscribing ”empty ellipsoid” uniquely up to a scale factorComplete pro...
متن کاملA Maximum Entropy Approach to the Realizability of Spin Correlation Matrices
Deriving the form of the optimal solution of a maximum entropy problem, we obtain an infinite family of linear inequalities characterizing the polytope of spin correlation matrices. For n ≤ 6, the facet description of such a polytope is provided through a minimal system of Bell-type inequalities.
متن کاملDevelopment of RMPC Algorithm for Compensation of Uncertain Time-Delay and Disturbance in NCS
In this paper, a synthesis method based on robust model predictive control is developed for compensation of uncertain time-delays in networked control systems with bounded disturbance. The proposed method uses linear matrix inequalities and uncertainty polytope to model uncertain time-delays and system disturbances. The continuous system with time-delay is discretized using uncertainty po...
متن کاملLinear optimization on the intersection of two fuzzy relational inequalities defined with Yager family of t-norms
In this paper, optimization of a linear objective function with fuzzy relational inequality constraints is investigated where the feasible region is formed as the intersection of two inequality fuzzy systems and Yager family of t-norms is considered as fuzzy composition. Yager family of t-norms is a parametric family of continuous nilpotent t-norms which is also one of the most frequently appli...
متن کاملLinear optimization on Hamacher-fuzzy relational inequalities
In this paper, optimization of a linear objective function with fuzzy relational inequality constraints is investigated where the feasible region is formed as the intersection of two inequality fuzzy systems and Hamacher family of t-norms is considered as fuzzy composition. Hamacher family of t-norms is a parametric family of continuous strict t-norms, whose members are decreasing functions of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Global Optimization
دوره 34 شماره
صفحات -
تاریخ انتشار 2006